
HCP request analytics
Release 1.5.5

Thorsten Simons

Sep 23, 2020

Contents

1 Installation 2
1.1 Pre-built Executable . 2
1.2 Self-built Executable . 2
1.3 Python virtual environment . 3

2 Command Syntax 4
2.1 load . 4
2.2 showqueries . 5
2.3 analyze . 5
2.4 dumpqueries . 5

3 Usage 6
3.1 Pre-requisites . 6
3.2 Running hcprequestanalytics . 6

4 Queries 11
4.1 Built-in queries . 11
4.2 Adding individual queries . 12
4.3 Columns in the logrecs table . 14
4.4 Private SQL functions that can be used in queries . 14

5 Result Interpretation 15
5.1 Load distribution . 15
5.2 Who’s generating load . 15
5.3 Request size . 16
5.4 Latency . 16
5.5 Throughput . 16
5.6 Interpretation of percentiles . 16

6 Good to know 18
6.1 Database size . 18
6.2 Compute . 18
6.3 Disk . 18
6.4 Memory . 19
6.5 Conclusion . 19

7 Get info 20
7.1 Queries running . 20
7.2 Disk space used for tmp indexes . 20

8 Release History 22

i

9 License / Trademarks 25
9.1 The MIT License (MIT) . 25
9.2 Trademarks and Copyrights of used material . 25

ii

HCP request analytics, Release 1.5.5

Tip: Make sure to use version 1.4.0 or better for HCP 8.x logs!

hcprequestanalytics reads HTTP access logs from log packages created by Hitachi Content Platform
(HCP), loads the content into a SQL database and runs SQL-queries against it to provide information
about topics like:

• types of requests

• types of requests to specific HCP nodes

• types of reuests from specific clients

• HTTP return codes

• size distribution of requested objects

• HCP internal latency distribution

• clients

It can be easily extended with individual queries (see Queries).

Results are generated as a multi-sheet XLSX workbook per default; optionally, CSV files can be requested.

Contents 1

CHAPTER 1

Installation

1.1 Pre-built Executable

For most modern Linux derivates you should be able to simply run the executable provided here1.

There is also a binary for macOS, built and tested with macOS Sierra (10.12.6) here2.

Grab it there, move it to a folder in your $PATH (/usr/local/bin, for example) and follow the instruc-
tions in the Usage chapter.

1.2 Self-built Executable

In case the provided executable fails to run on your system, you can easily build it on your own. Here’s
how to do that:

• Clone the repository from GitLab3:

$ git clone https://gitlab.com/simont3/hcprequestanalytics.git

• Change into the project folder and create a Python 3 virtual environment and activate it:

$ cd hcprequestanalytics/src
$ python3 -m venv .venv
$ source .venv/bin/activate

• Update pip and setuptools, then load all required dev-packages:

(.venv) $ pip install -U setuptools pip
(.venv) $ pip install -r pip-requirements-dev.txt

• Run the build tool:

(.venv) $ pyinstaller hcprequestanalytics.spec

1 https://gitlab.com/simont3/hcprequestanalytics/blob/master/src/dist/hcprequestanalytics.linux
2 https://gitlab.com/simont3/hcprequestanalytics/blob/master/src/dist/hcprequestanalytics.macos
3 https://gitlab.com/simont3/hcprequestanalytics.git

2

https://gitlab.com/simont3/hcprequestanalytics/blob/master/src/dist/hcprequestanalytics.linux
https://gitlab.com/simont3/hcprequestanalytics/blob/master/src/dist/hcprequestanalytics.macos
https://gitlab.com/simont3/hcprequestanalytics.git

HCP request analytics, Release 1.5.5

You should find the executable in the dist subfolder.

Tip: Most likely, in hcprequestanalytics.spec, you will have to adopt the path set in the
_pathext variable to your setup!

• Now move it to a folder in your $PATH (/usr/local/bin, for example) and follow the instructions
in the Usage chapter.

1.3 Python virtual environment

• Create a Python 3 virtual environment and activate it:

$ python3 -m venv .venv
$ source .venv/bin/activate

• Install the hcprequestanalytics package:

(.venv) $ pip install -U setuptools pip
(.venv) $ pip install hcprequestanalytics

• Now you can run hcprequestanalytics this way:

(.venv) $ hcprequestanalytics

Note: Remember, every time you want to run hcprequestanalytics, you need to activate the virtual
environment before!

1.3. Python virtual environment 3

CHAPTER 2

Command Syntax

hcprequestanalytics consists of several subcommands, each used for a specific piece of work. Use
--help (or -h) for details:

$ hcprequestanalytics -h
usage: hcprequestanalytics [-h] [--version]

{load,analyze,showqueries,dumpqueries} ...

positional arguments:
{load,analyze,showqueries,dumpqueries}

load load the database
analyze analyze the database
showqueries show the available queries
dumpqueries dump the built-in queries to stdout

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit

2.1 load

The load subcommand loads the http gateway logs into a sqlite3 database file for later analytics:

$ hcprequestanalytics load -h
usage: hcprequestanalytics load [-h] -d DB logpkg

positional arguments:
logpkg the HCP log package to process

optional arguments:
-h, --help show this help message and exit
-d DB the database file

4

HCP request analytics, Release 1.5.5

2.2 showqueries

The showqueries subcommand shows the avaible queries - the ones built-in as well as the ones added
through the -a parameter:

$ hcprequestanalytics showqueries -h
usage: hcprequestanalytics showqueries [-h] [-a ADDITIONALQUERIES] [-1]

optional arguments:
-h, --help show this help message and exit
-a ADDITIONALQUERIES a file containg addition queries (see documentation)
-1 print a concatenated list of queries, for easy cut and

paste

2.3 analyze

The analyze subcommand runs queries against the database created with the load subcommand to
create an xlsx file as result. Alternatively, a set of csv files can be requested as well.

$ hcprequestanalytics analyze -h
usage: hcprequestanalytics analyze [-h] [-a ADDITIONALQUERIES] -d DB

[-p PREFIX] [-c] [--procs PROCESSES]
[queries [queries ...]]

positional arguments:
queries a list of query names, or nothing for "all"; you can

select a group of queries by using the first few
characters followed by an asteriks ('req*' for
example)

optional arguments:
-h, --help show this help message and exit
-a ADDITIONALQUERIES a file containg addition queries (see documentation)
-d DB the database file
-p PREFIX prefix for the output files
-s analyze requests recorded by snodes
-c create CSV files instead of a XLSX file
--procs PROCESSES no. of subprocesses to run, defaults to no. of CPUs

2.4 dumpqueries

The dumpqueries subcommand dumps the built-in queries to stdout. They can be used as templates to
build own queries for use with the -a parameter:

$ hcprequestanalytics dumpqueries -h
usage: hcprequestanalytics dumpqueries [-h]

optional arguments:
-h, --help show this help message and exit

2.2. showqueries 5

CHAPTER 3

Usage

3.1 Pre-requisites

• hcprequestanalytics has been installed as described in chapter Installation

• Either the binary has placed in the $PATH or the Python virtual environment has been activated
and hcprequestanalytics can be started successfully:

$ hcprequestanalytics --version
hcprequestanalytics: v.1.3.2 (2017-10-10/Sm)

• HCP internal logs have been downloaded into an empty folder:

$ ls -lh HCPLogs-*
-rw-r--r--@ 1 tsimons 273924073 4.3M Sep 13 07:44 HCPLogs-hcp72.archivas.com-acc-
→˓20170913-0742.zip

• Enough free space is available to uncompress the log package and all http_gateway_request.log files
contained in it

3.2 Running hcprequestanalytics

Running hcprequestanalytics is a two step process:

1. Create and load the database from an HCP log package:

$ hcprequestanalytics load -d hcp72.db HCPLogs-hcp72.archivas.com-acc-20170913-0742.zip
un-packing HCPLogs-hcp72.archivas.com-acc-20170913-0742.zip

un-packing access logs for node 192.168.0.176
un-packing access logs for node 192.168.0.177
un-packing access logs for node 192.168.0.178
un-packing access logs for node 192.168.0.179

unpacking HCPLogs-hcp72.archivas.com-acc-20170913-0742.zip took 5.762 seconds
reading node 176 - ./tmpdkllzu3y/.../20170812-0316/http_gateway_request.log.0 - 5,

→˓295 records
reading node 176 - ./tmpdkllzu3y/.../20170813-0341/http_gateway_request.log.0 -␣

→˓944 records
(continues on next page)

6

HCP request analytics, Release 1.5.5

(continued from previous page)

[..]
lots of more entries listed here

[..]
reading node 179 - ./tmpdkllzu3y/.../20170913-0328/http_gateway_request.log.0 - 1␣

→˓records
reading node 179 - ./tmpdkllzu3y/.../20170913-0743/http_gateway_request.log.0 - 0␣

→˓records
loading database with 590,734 records took 30.288 seconds

$ ls -lh hcp72.db
-rw-r--r-- 1 tsimons 273924073 109M Oct 10 16:58 hcp72.db

You can repeat the loading for more Log packages, in which case the existing database will be used.

Of course, you’ll want to load Logs from a single HCP into the database, as results would be
falsified, otherwise!

Warning: hcprequestanalytics doesn’t check for duplicate records. That means, if you
load the database with the same log package twice, the query results will be falsified, as well.

2. Run queries against the database

Tip: hcprequestanalytics analyze starts as much subprocesses as CPUs are available. Using
that pool of subprocesses, it runs queries in parallel. On a 4-CPU system, the overal runtime should
go down to roughtly a quarter; the limiting factors are descibed in the Good to know chapter.

$ hcprequestanalytics analyze -d hcp72.db -p hcp72
scheduling these queries for analytics using 8 parallel process(es):

500_highest_throughput : The 500 records with the highest throughput␣
→˓(Bytes/sec)

500_largest : The records with the 500 largest requests
500_worst_latency : The records with the 500 worst latencies
clientip : No. of records per client IP address
clientip_httpcode : No. of records per http code per client IP address
clientip_request_httpcode : No. of records per http code per request per␣

→˓client IP address
count : No. of records, overall
day : No. of records per day
day_hour : No. of records per hour per day
day_hour_req : No. of records per request per hour per day
day_req : No. of records per request per day
day_req_httpcode : No. of records per http code per request per day
node : No. of records per node
node_req : No. of records per request per node
node_req_httpcode : No. of records per http code per request per node
percentile_req : No. of records per request analysis, including␣

→˓percentiles for size and latency
percentile_throughput_128kb : No. of records per request, with percentiles on␣

→˓throughput (Bytes/sec) for objects >= 128KB
req : No. of records per request
req_httpcode : No. of records per http code per request
req_httpcode_node : No. of records per node per http code per request

wait for queries finishing:
count : 0.290 seconds
500_worst_latency : 0.761 seconds
500_highest_throughput : 1.298 seconds
clientip : 1.436 seconds

(continues on next page)

3.2. Running hcprequestanalytics 7

HCP request analytics, Release 1.5.5

(continued from previous page)

500_largest : 1.951 seconds
clientip_httpcode : 2.017 seconds
day : 2.244 seconds
clientip_request_httpcode : 2.553 seconds
day_hour : 3.269 seconds
node : 1.522 seconds
percentile_throughput_128kb : 0.665 seconds
node_req : 2.444 seconds
day_req : 3.385 seconds
day_hour_req : 3.972 seconds
day_req_httpcode : 3.439 seconds
node_req_httpcode : 2.643 seconds
req : 1.400 seconds
req_httpcode : 1.483 seconds
req_httpcode_node : 1.284 seconds
percentile_req : 17.030 seconds

analytics finished after 20.094 seconds

Tip: You can run selected queries by adding them to the end of the command:

$ hcprequestanalytics -d hcp72.db analyze -p hcp72 req count

This will run just the req and the count query.

It’s also possible to select a group of queries by adding an asteriks:

$ hcprequestanalytics -d hcp72.db analyze -p hcp72 'req*'

This will run all queries beginning with req.

Anyhow, you now have an xlsx (Excel) file with the results per query:

$ ls -lh *.xlsx
-rw-r--r-- 1 tsimons 273924073 178K Oct 10 17:02 hcp72-analyzed.xlsx

3.2. Running hcprequestanalytics 8

HCP request analytics, Release 1.5.5

If you prefer comma-separated-value (CSV) files, just add -c to the analyze command:

$ hcprequestanalytics analyze -d hcp72.db -p hcp72 -c
scheduling these queries for analytics using 8 parallel process(es):

500_highest_throughput : The 500 records with the highest throughput␣
→˓(Bytes/sec)

500_largest : The records with the 500 largest requests
500_worst_latency : The records with the 500 worst latencies
clientip : No. of records per client IP address
clientip_httpcode : No. of records per http code per client IP address
clientip_request_httpcode : No. of records per http code per request per␣

→˓client IP address
count : No. of records, overall
day : No. of records per day
day_hour : No. of records per hour per day
day_hour_req : No. of records per request per hour per day
day_req : No. of records per request per day
day_req_httpcode : No. of records per http code per request per day
node : No. of records per node
node_req : No. of records per request per node
node_req_httpcode : No. of records per http code per request per node
percentile_req : No. of records per request analysis, including␣

→˓percentiles for size and latency
percentile_throughput_128kb : No. of records per request, with percentiles on␣

→˓throughput (Bytes/sec) for objects >= 128KB
req : No. of records per request
req_httpcode : No. of records per http code per request
req_httpcode_node : No. of records per node per http code per request

wait for queries finishing:
count : 0.323 seconds
500_worst_latency : 0.805 seconds
clientip : 1.309 seconds
500_highest_throughput : 1.315 seconds
day : 1.797 seconds
clientip_httpcode : 1.807 seconds
500_largest : 2.188 seconds
clientip_request_httpcode : 2.616 seconds
node : 1.440 seconds
day_hour : 2.970 seconds
percentile_throughput_128kb : 0.627 seconds
node_req : 2.144 seconds
day_req : 2.890 seconds
day_hour_req : 3.454 seconds
day_req_httpcode : 3.087 seconds
req : 1.222 seconds
node_req_httpcode : 2.385 seconds
req_httpcode : 1.237 seconds
req_httpcode_node : 1.410 seconds
percentile_req : 17.067 seconds

analytics finished after 19.720 seconds

You now have one csv file per query:

$ ls -lh *.csv
-rw-r--r-- 1 tsimons 273924073 87K Oct 10 17:05 hcp72-500_highest_throughput.csv
-rw-r--r-- 1 tsimons 273924073 86K Oct 10 17:05 hcp72-500_largest.csv
-rw-r--r-- 1 tsimons 273924073 77K Oct 10 17:05 hcp72-500_worst_latency.csv
-rw-r--r-- 1 tsimons 273924073 462B Oct 10 17:05 hcp72-clientip.csv
-rw-r--r-- 1 tsimons 273924073 1.9K Oct 10 17:05 hcp72-clientip_httpcode.csv
-rw-r--r-- 1 tsimons 273924073 3.0K Oct 10 17:05 hcp72-clientip_request_httpcode.csv
-rw-r--r-- 1 tsimons 273924073 18B Oct 10 17:05 hcp72-count.csv
-rw-r--r-- 1 tsimons 273924073 2.0K Oct 10 17:05 hcp72-day.csv

(continues on next page)

3.2. Running hcprequestanalytics 9

HCP request analytics, Release 1.5.5

(continued from previous page)

-rw-r--r-- 1 tsimons 273924073 7.8K Oct 10 17:05 hcp72-day_hour.csv
-rw-r--r-- 1 tsimons 273924073 18K Oct 10 17:05 hcp72-day_hour_req.csv
-rw-r--r-- 1 tsimons 273924073 6.1K Oct 10 17:05 hcp72-day_req.csv
-rw-r--r-- 1 tsimons 273924073 8.7K Oct 10 17:05 hcp72-day_req_httpcode.csv
-rw-r--r-- 1 tsimons 273924073 359B Oct 10 17:05 hcp72-node.csv
-rw-r--r-- 1 tsimons 273924073 1.2K Oct 10 17:05 hcp72-node_req.csv
-rw-r--r-- 1 tsimons 273924073 3.5K Oct 10 17:05 hcp72-node_req_httpcode.csv
-rw-r--r-- 1 tsimons 273924073 1.1K Oct 10 17:05 hcp72-percentile_req.csv
-rw-r--r-- 1 tsimons 273924073 506B Oct 10 17:05 hcp72-percentile_throughput_128kb.csv
-rw-r--r-- 1 tsimons 273924073 371B Oct 10 17:05 hcp72-req.csv
-rw-r--r-- 1 tsimons 273924073 1.0K Oct 10 17:05 hcp72-req_httpcode.csv
-rw-r--r-- 1 tsimons 273924073 3.5K Oct 10 17:05 hcp72-req_httpcode_node.csv

3.2. Running hcprequestanalytics 10

CHAPTER 4

Queries

4.1 Built-in queries

hcprequestanalytics comes with a set of pre-defined queries:

$ hcprequestanalytics showqueries
available queries:

500_highest_throughput The 500 records with the highest throughput (Bytes/sec)
500_httpcode_409 The 500 newest records with http code 409
500_httpcode_413 The 500 newest records with http code 413
500_httpcode_503 The 500 newest records with http code 503
500_largest_req_httpcode_node The records with the 500 largest requests by req,␣

→˓httpcode, node
500_largest_size The records with the 500 largest requests sorted by␣

→˓size
500_worst_latency The records with the 500 worst latencies
clientip No. of records per client IP address
clientip_httpcode No. of records per http code per client IP address
clientip_node No. of records per clientip per node
clientip_request_httpcode No. of records per http code per request per client IP␣

→˓address
count No. of records, overall
day No. of records per day
day_hour No. of records per hour per day
day_hour_req No. of records per request per hour per day
day_req No. of records per request per day
day_req_httpcode No. of records per http code per request per day
mapi_endp_req_http MAPI request: endpoints, request, http code
mapi_user_req_http MAPI requests by user
node No. of records per node
node_req No. of records per request per node
node_req_httpcode No. of records per http code per request per node
percentile_req No. of records per request analysis, including␣

→˓percentiles for size and latency
percentile_throughput_128kb No. of records per request, with percentiles on␣

→˓throughput (Bytes/sec) for objects >= 128KB
req No. of records per request
req_httpcode No. of records per http code per request
req_httpcode_node No. of records per node per http code per request

(continues on next page)

11

HCP request analytics, Release 1.5.5

(continued from previous page)

ten_ns_proto_clientip_httpcode No. of records per Tenant / Namespace / protocol /␣
→˓client IP address / http code

ten_ns_proto_httpcode No. of records per Tenant / Namespace / protocol /␣
→˓http code

ten_ns_proto_percentile_req No. of records per Tenant / Namespace / protocol,␣
→˓including percentiles for size and latency

ten_ns_proto_user_httpcode No. of records per Tenant / Namespace / protocol /␣
→˓user / http code

ten_proto_httpcode No. of records per Tenant / protocol / http code
ten_user_ns_req_http Tenants with all users accessing Namespaces, incl.␣

→˓request and httpcode

Tip: More queries might have been added with newer versions - always check with the command above!

4.2 Adding individual queries

If additional queries are wanted, hcprequestanalytics can be easily extended by creating a query file
and adding it to the call:

$ cat addqueries
[add_count]
comment = count all records
query = SELECT count(*) FROM logrecs

[add_req_count]
comment = count records per request
query = SELECT request, count(*) FROM logrecs GROUP BY request
freeze pane : C3

[add_node_req_http]
comment = node-per-request-per-httpcode analysis
query = SELECT node, request, httpcode, count(*),

min(size), avg(size), max(size),
percentile(size, 10), percentile(size, 20),
percentile(size, 30), percentile(size, 40),
percentile(size, 50), percentile(size, 60),
percentile(size, 70), percentile(size, 80),
percentile(size, 90), percentile(size, 95),
percentile(size, 99), percentile(size, 99.9),
min(latency), avg(latency),
max(latency),
percentile(latency, 10), percentile(latency, 20),
percentile(latency, 30), percentile(latency, 40),
percentile(latency, 50), percentile(latency, 60),
percentile(latency, 70), percentile(latency, 80),
percentile(latency, 90), percentile(latency, 95),
percentile(latency, 99), percentile(latency, 99.9)
FROM logrecs GROUP BY node, request, httpcode

freeze pane : E3

You can check the available queries, including the additional ones:

$ hcprequestanalytics -d dbfile.db -a addqueries showqueries
available queries:

500_highest_throughput The 500 records with the highest throughput (Bytes/sec)
500_largest_req_httpcode_node The records with the 500 largest requests by req, httpcode,

→˓ node
(continues on next page)

4.2. Adding individual queries 12

HCP request analytics, Release 1.5.5

(continued from previous page)

500_largest_size The records with the 500 largest requests sorted by size
500_worst_latency The records with the 500 worst latencies
add_count count all records
add_node_req_http node-per-request-per-httpcode analysis
add_req_count count records per request
clientip No. of records per client IP address
clientip_httpcode No. of records per http code per client IP address
clientip_request_httpcode No. of records per http code per request per client IP␣

→˓address
count No. of records, overall
day No. of records per day
day_hour No. of records per hour per day
day_hour_req No. of records per request per hour per day
day_req No. of records per request per day
day_req_httpcode No. of records per http code per request per day
node No. of records per node
node_req No. of records per request per node
node_req_httpcode No. of records per http code per request per node
percentile_req No. of records per request analysis, including percentiles␣

→˓for size and latency
percentile_throughput_128kb No. of records per request, with percentiles on throughput␣

→˓(Bytes/sec) for objects >= 128KB
req No. of records per request
req_httpcode No. of records per http code per request
req_httpcode_node No. of records per node per http code per request
ten_ns_proto_httpcode No. of records per Tenant / Namespace / protocol / http␣

→˓code
ten_ns_proto_percentile_req No. of records per Tenant / Namespace / protocol,␣

→˓including percentiles for size and latency
ten_ns_proto_user_httpcode No. of records per Tenant / Namespace / protocol / user /␣

→˓http code
ten_proto_httpcode No. of records per Tenant / protocol / http code

Rules:

• You need to stick to the format as shown above - not doing so will most likely result in a crash

• the [term] is the name of the query, which you can use in the analyze call

• the comment entry is what is shown in when calling showqueries

• the query entry is where to put the query in

• The QUERY has to follow the SQLite3 SELECT rules4

• You can use all the column names listed below, the aggregate functions offered by SQLite5 as well
as the private functions listed below

4 https://www.sqlite.org/lang_select.html
5 https://www.sqlite.org/lang_aggfunc.html

4.2. Adding individual queries 13

https://www.sqlite.org/lang_select.html
https://www.sqlite.org/lang_aggfunc.html

HCP request analytics, Release 1.5.5

4.3 Columns in the logrecs table

column type description
node TEXT the HCP nodes backend IP address
clientip TEXT the requesting clients IP address
user TEXT the user who did the request
timestamp FLOAT the point in time of the request (seconds since Epoch)
timestampstr TEXT the point in time of the request (string)
request TEXT the HTTP request
path TEXT the requested object
httpcode INT the HTTP return code
size INT the size of the transfers body
namespace TEXT the HCP Namespace accessed (usually, in the form of namespace.

tenant[@protocol])
latency INT the internal latency needed to fullfil the request

4.4 Private SQL functions that can be used in queries

• getNamespace(path, namespace)

Extract the name of the Namespace (bucket, container) from the path and namespace database
columns.

• getTenant(namespace)

Extract the name of the Tenant from the namespace database column.

• getProtocol(namespace)

Extract the access protocol used from the namespace database column. Returns either S3, Swift
or native REST.

• percentile(column, float)

Aggregate function that calculates the percentage (given by float) of column from all selected
records.

Warning: Due to it’s nature, percentile() collects a list of the columns’ value from each
selected row. As this list is held in memory, it can consume a lot of it. A rough calculation
would be:

no. of percentile() occurrences in the query
* no of rows selected
* 24 bytes

• tp(size, latency)

Calculates the throughput (in bytes/second) from an objects size and the internal latency.

4.3. Columns in the logrecs table 14

CHAPTER 5

Result Interpretation

Proper interpretation of hcprequestanalytics results requires some good knowledge about how HCP
works, as well as about http, networking and client behaviour. The information in this chapter hopefully
helps understanding the results a bit.6

5.1 Load distribution

You can use the node_* queries to find out how load is distributed across the nodes.

As the example shows, the load distribution is OK so far. A slight deviation is normal due to DNS
(and/or loadbalancer) behaviour.

Due to the nature of HCP, you’ll want all load to be distributed evently across all available
HCP Nodes.

5.2 Who’s generating load

Often, it is of interest to find out who exactly is generating load towards HCP. The clientip_* queries
are your friend in this case:

6 All queries referenced in this chapter are based on the built-in queries.

15

HCP request analytics, Release 1.5.5

You will still need to map the IP-addresses to your clients, as usual.

5.3 Request size

All versions of HCP prior to version 8 are logging request sizes for GET requests (and some POST
requests), only. That’s why often enough a request size of zero is reported for everything else.

That of course has its implications regarding throughput (Bytes/sec), which can only be calculated for
requests with sizes > zero.

5.4 Latency

The latency column, seen in the result of many queries, state what is called the HCP internal latency.
That means, it talks about the time passed between the clients’ request being received by HCP until the
last byte of HCPs answer was sent back to the client. During this time, things like fetching the object
from the backend storage, de-compression and/or de-cryption will take place, adding to the overall time
needed for sending or receiving the objects data itself.

The latency value itself doesn’t tell too much, as long it’s not put into relation with the size of the
request. In addition, latency created by the network and even the client will go into this value, as long
as these latencies take place while the request is between the two states mentioned in the beginning.

That means that a huge latency most likely isn’t an issue with huge objects, but might be with small
ones.

5.5 Throughput

Throughput, mentioned as Bytes/sec in some of the queries’ results, is a simple calculation of size devided
by latency. It does not necessarily tell you the network throughput for a single object, as the latency
also takes in account the time needed to de-crypt or un-compress the object before delivery to the client,
for example.

5.6 Interpretation of percentiles

A percentile (or a centile) is a measure used in statistics indicating the value below which a given per-
centage of observations in a group of observations fall. For example, the 20th percentile is the value (or
score) below which 20% of the observations may be found.7

The percentile_* queries try to make use of this by presenting a wide range of percentiles for size,
latency and Bytes/sec (see the Throughput section!). Basically, it will tell you how your values are
distributed within the entire range of 100% of the data.

7 Taken from the Percentile article at Wikipedia8

8 https://en.wikipedia.org/wiki/Percentile

5.3. Request size 16

https://en.wikipedia.org/wiki/Percentile

HCP request analytics, Release 1.5.5

Let’s take row 6 as an example - it tells that the GET request with the hugest size was 581,632,000
bytes. But it also tells that 99.9% of the GET requests are 2,550,516 Bytes or smaller (cell Q6). This
lets us know that the max(size) value is just a peak, appearing in the highest 0.1% of the requests.
Looking at the 500_largest_size query result will proof that:

This gives a good overview, but still needs to be taken in relation with other parameters - for example,
if you have overall high latency, you might also have overall huge request sizes. . .

5.6. Interpretation of percentiles 17

CHAPTER 6

Good to know

6.1 Database size

A single database record will use 200+ bytes if the paths in the requests are short in average (~25
characters), and will grow on longer paths.

6.2 Compute

As of today, loading the database is single-threaded. Depending on the disk throughput, it will use a
single CPU at 100%.

Running queries, on the other hand, is done in parallel using subprocesses. Each of them will load a
single CPU to up to 100%, again depending on disk throughput.

In the default setting (i.e. w/o specifying --procs). it will spawn as much subprocesses as there are
CPUs in the system. This can easily load your system to its limits.

6.3 Disk

Depending on the size, the database itself can get quite big. A busy 12-node HCP generated a 7.3GB
log package (compressed) for a single week. That translated into a 74GB database, holding 384.1 million
log records.

Due to the fact that there are no indexes configured for the database (many different ones would be
needed to facilitate all queries), these indexes are created (and loaded) on the fly when running queries.
They will end up in your systems usual tmp folder - if that one doesn’t have enough free capacity, the
queries will fail. Some of the more complex queries will require as much disk space as the database itself.

Now think of running some of these queries in parallel, each creating its own temp indexes. While
analyzing huge databases, this will likely overload your system, unless you have a lot of disk space.

If hcprequestanalytics prints error messages about filesystem or database full, you can make sure that
an appropriately sized folder is used for the temporary database indexes by setting this environment
variable before running hcprequestanalytics:

18

HCP request analytics, Release 1.5.5

$ export SQLITE_TMPDIR=/wherever/you/have/enough/space

Make sure to replace /wherever/you/have/enough/space with a path that matches your systems reality,
of course!

6.4 Memory

Especially the percentile() aggregate function needs a lot of memory when used in queries against huge
databases, because it has to hold a list of all values to be able to calculate the percentile, at the end.

The mentioned req_httpcode query has been observed to use more than 35GB of real memory on the
database mentioned above.

Trying to use more memory than available will usually kill a query. Running multiple queries in parallel,
each of them allocation a huge amount of memory will quickly bring you to that point, and all queries
will fail.

6.5 Conclusion

A simple task -analyzing http log files- can be much more challenging than expected.

Compute, Disk, Memory and parallelism are all relevant as soon as the amount of data exceeds a pretty
low barrier. Depending on the amount of log data to analyze, these needs have to be balanced.

The only strategies here are:

• use the percentile() aggregate function sparingly, to save memory

• run less queries in parallel than the no. of CPUs would allow (--procs 2, for example)

• or even run queries one at a time (turn off multi-processing by --procs 1)

or:

• throw in more hardware: CPUs, Memory, Disk capacity

6.4. Memory 19

CHAPTER 7

Get info

You might want to see what’s going on, especially if you are running hcprequestanalytics against a
huge database.

7.1 Queries running

As the queries are running in parallel, you will receive info about its success (or fail) once each query
has ended. To find out which queries are running at the moment, you can run this command in a second
session:

$ lsof 2>/dev/null | grep '__*'
hcpreques 602 sm 16u REG 1,5 0 5461618 /private/var/folders/y3/74nllcpj5f511sgw18t55_
→˓qh0000gn/T/I_am__*clientip_httpcode*__pbxvbswl
hcpreques 603 sm 17u REG 1,5 0 5461730 /private/var/folders/y3/74nllcpj5f511sgw18t55_
→˓qh0000gn/T/I_am__*clientip_request_httpcode*__198td_f7

In this example, the string I_am__*clientip_httpcode*__pbxvbswl in the last field of the output
indicates that process 602 (the second field) runs the clientip_httpcode query.

7.2 Disk space used for tmp indexes

To find out how much disk space is used for temporary database indexes, you can run:

$ lsof 2>/dev/null | grep /wherever/you/have/enough/space
hcpreques 602 sm txt REG 1,2 5301620171 26454 /wherever/you/have/enough/space/etilqs_
→˓rrlN0dgfFfwQg9E
hcpreques 602 sm 18u REG 1,2 5302781691 26454 /wherever/you/have/enough/space/etilqs_
→˓rrlN0dgfFfwQg9E
hcpreques 603 sm txt REG 1,2 1256108032 26456 /wherever/you/have/enough/space/etilqs_
→˓7QxuTtMv8AtPYnw
hcpreques 603 sm 19u REG 1,2 1256108032 26456 /wherever/you/have/enough/space/etilqs_
→˓7QxuTtMv8AtPYnw

You will have to replace /wherever/you/have/enough/space by the folder you are using for the tem-
porary database indexes (see Good to know for details).

20

HCP request analytics, Release 1.5.5

The 7th field will tell you how many bytes are actually used for this single temporary database index.
Be aware that each temporary index shows up twice in this output, as it is opend twice by the process.
The slight difference in size is caused by the process writing into the index during lsof was running.
The 2nd field will tell you the pid of the process running the query using this temporary index.

BTW, you will not see the files containing the indexes in the filesystem, and they will not be accounted
for when using the df or du commands.

7.2. Disk space used for tmp indexes 21

CHAPTER 8

Release History

1.5.5 2020-09-23

• fixed a bug that caused loading a log package right in the beginning (missing 1 required positional
argument: ‘addqueries’)

1.5.4 2019-06-05

• added the option to analyze S-node logs from a hcphealth database

• added MQE related queries

• matured the database functions to withstand incorrect values in numerical fields

1.5.3 2019-05-21

• added the clientip_node query

1.5.2 2019-05-15

• analyze now also allows to use a database created by hcpheath

1.5.1 2019-03-19

• replaced shutil.unpack_archive with zipfile.Zipfile.extractall, as unpack_archive seems to have is-
sues with zip- file members > 2 GB.

1.5.0 2019-01-24

• added a table for MAPI-related logs to the database, as well as queries specially tailored for MAPI

1.4.5 2019-01-23

• added a query that list users accessing HCP

1.4.4 2019-01-14

• added some more queries

1.4.3 2019-01-13

• removed unnecessary debug output

1.4.2 2019-01-11

• added queries related to Tenant / Namespace / protocol

1.4.1 2019-01-04

22

HCP request analytics, Release 1.5.5

• very minor optical changes to the result XLSX file (index sheet)

1.4.0 2018-12-27

• made compatibility changes for log packages created by HCP 8.x

1.3.8 2017-12-07

• fixed a bug that caused log packages to fail if they contained HCP-S logs

• Fixed a bug that caused a crash in analyze when a query didn’t return any data

• made using setproctitle optional when installing through pip for environments that are not sup-
ported (CygWin, for example)

1.3.7 2017-12-07

• fixed setup.py to include pre-requisite setproctitle (thanks to Kevin, again)

1.3.6 2017-11-01

• now properly builds with Python 3.6.3 and PyInstaller 3.3; removed the note from docs

1.3.5 2017-10-30

• now using setproctitle to set more clear process titles (for ps, htop)

1.3.4 2017-10-13

• fixed a bug invented in 1.3.3 that caused long running queries to break xlsx creation (thanks to
Kevin Varley for uncovering this)

1.3.3 2017-10-12

• removed gridlines from the content sheet

• fine-tuned the column width in the query sheets

• made the runtime column a bit more readable

• added 500_largest_size query

• some documentation additions

1.3.2 2017-10-10

• added query runtime to content sheet in xlsx

1.3.1 2017-10-05

• added timestamp of first and last record to xlsx file

• added SQL function tp(size, latency) to calculate the throughput

• adopted queries to use tp()

1.3.0 2017-10-03

• some more xlsx luxury

• added more queries

• added the ability to dump the built-in queries to stdout

• re-worked the cmd-line parameters (-d is now where it belongs to. . .)

1.2.2 2017-09-26

• documentation fixes

1.2.1 2017-09-25

• removed percentile() from the most queries, due to too long runtime on huge datasets

• added the possibility to select a group of queries on analyze

1.2.0 2017-09-24

23

HCP request analytics, Release 1.5.5

• now analyze runs up to cpu_count subprocesses, which will run the queries in parallel

• added cmdline parameter --procs to allow to set the no. of subprocesses to use, bypassing the
cpu_count

1.1.1 2017-09-23

• added per-day queries

• all numerical fields in the XLSX file now formated as #.##0

1.1.0 2017-09-23

• re-built the mechanism to add individual queries

• *.spec file prepared to build with pyinstaller w/o change on macOS and Linux

1.0.4 2017-09-22

• a little more featured XLXS files

1.0.3 2017-09-21

• now creating a single XLSX file on analyze, added option -c to create CSV files instead

1.0.2 2017-09-16

• fixed the timestamp column (now hold the seconds since Epoch)

1.0.1 2017-09-15

• now we do understand log records of access to the Default Namespace properly

• speed-up of unpacking by just unpacking the required archives

1.0.0 2017-09-10

• initial release

24

CHAPTER 9

License / Trademarks

9.1 The MIT License (MIT)

Copyright (c) 2017-2020 Thorsten Simons (sw@snomis.eu)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

9.2 Trademarks and Copyrights of used material

Hitachi is a registered trademark of Hitachi, Ltd., in the United States and other countries. Hitachi
Data Systems is a registered trademark and service mark of Hitachi, Ltd., in the United States and other
countries.

Archivas, Hitachi Content Platform, Hitachi Content Platform Anywhere and Hitachi Data Ingestor are
registered trademarks of Hitachi Data Systems Corporation.

All other trademarks, service marks, and company names in this document or web site are properties of
their respective owners.

The used icon was made by Freepik9 from Flaticon10 and is licensed by Creative Commons BY 3.011.
9 http://www.freepik.com

10 https://www.flaticon.com/
11 http://creativecommons.org/licenses/by/3.0/

25

mailto:sw@snomis.eu
http://www.freepik.com
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/

	Installation
	Pre-built Executable
	Self-built Executable
	Python virtual environment

	Command Syntax
	load
	showqueries
	analyze
	dumpqueries

	Usage
	Pre-requisites
	Running hcprequestanalytics

	Queries
	Built-in queries
	Adding individual queries
	Columns in the logrecs table
	Private SQL functions that can be used in queries

	Result Interpretation
	Load distribution
	Who’s generating load
	Request size
	Latency
	Throughput
	Interpretation of percentiles

	Good to know
	Database size
	Compute
	Disk
	Memory
	Conclusion

	Get info
	Queries running
	Disk space used for tmp indexes

	Release History
	License / Trademarks
	The MIT License (MIT)
	Trademarks and Copyrights of used material

